職位描述
崗位職責:
- Design and promote the application scheme of multimodal large models for visual quality inspection (such as defect detection, weld quality analysis), intelligent production scheduling, predictive maintenance and other scenarios in auto parts manufacturing;
針對汽車零部件制造中的視覺質檢(如缺陷檢測、焊縫質量分析)、智能排產、預測性維護等場景,設計并推動多模態大模型的應用方案;
- Actively track cutting-edge technologies such as multimodal large models, diffusion models, and reinforcement learning, and explore their innovative applications in industrial scenarios such as production process optimization;
積極跟蹤多模態大模型、擴散模型、強化學習等前沿技術,探索其在生產流程優化等工業場景的創新應用;
- Build a data perception system for industrial environments, realize the collection and processing of multi-source data (such as images, sensor data, text, etc.), and generate decision-making instructions based on AI models ;
構建面向工業環境的數據感知體系,實現多源數據(如圖像、傳感器數據、文本等)的采集與處理,并基于AI模型生成決策指令;
- Proficient in and applying RAG (retrieval-augmented generation) and agent task automation to integrate them into the solution;
熟練掌握并應用RAG(檢索增強生成)、智能體(Agent)任務自動化等技術,將其融入解決方案
- Refine the results of AI application projects, form standardized industry solutions and typical cases, and use them for external promotion and internal knowledge precipitation, helping to build a closed loop of AI application ecology;
提煉AI應用項目成果,形成標準化的行業解決方案與典型案例,用于對外推廣和內部知識沉淀,助力構建AI應用生態閉環;
- Assist in the integration, testing, validation, and deployment of AI projects with existing manufacturing systems (e.g., MES, SCADA, PLC), ensuring project timelines and quality standards are met;
協助完成AI項目與現有制造系統(如MES, SCADA,)的集成、測試驗證與上線應用,確保項目進度與質量;
- Data cleaning and data into the lake;
數據清理與數據入湖;
- AI system big data integration and post-maintenance.
AI系統大數據整合以及后期維護。
任職要求:
- 計算機、人工智能、機器學習、數據科學、自動化、機械電子等相關專業本科及以上學歷;
- 三年以上AI/機器學習相關項目開發經驗,具備完整的AI項目落地經驗(從數據到部署);有制造業(尤其是汽車、機械、電子行業)AI項目經驗者優先;
- 熟練掌握英文的讀寫聽說,口語好;
- 熟悉計算機信息系統架構,熟練掌握VB、VB.NET、C++、C#、Python、Java(必須)等兩種以上開發技術,熟悉主流開發工具;接口開發;
- 熟練使用TensorFlow等深度學習框架;具備容器化(Docker/K8s) 和高性能服務開發經驗;
- 熟練使用OpenCV或HalCon;
- 精通機器學習/深度學習框架(如PyTorch, TensorFlow),有時間序列分析(預測性維護)和計算機視覺(缺陷檢測)項目經驗;
- 掌握異常檢測算法(如自編碼器、隔離森林)和根因分析方法;
- 了解工業自動化系統(如PLC、SCADA)和常見工業通信協議(如OPC UA, MQTT, Modbus, Profinet)者優先。